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QALE-FEM for modelling 3D overturning waves
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SUMMARY

A further development of the QALE-FEM (quasi-arbitrary Lagrangian–Eulerian finite element method)
based on a fully nonlinear potential theory is presented in this paper. This development enables the
QALE-FEM to deal with three-dimensional (3D) overturning waves over complex seabeds, which have
not been considered since the method was devised by the authors of this paper in their previous works
(J. Comput. Phys. 2006; 212:52–72; J. Numer. Meth. Engng 2009; 78:713–756). In order to tackle
challenges associated with 3D overturning waves, two new numerical techniques are suggested. They are
the techniques for moving the mesh and for calculating the fluid velocity near overturning jets, respectively.
The developed method is validated by comparing its numerical results with experimental data and results
from other numerical methods available in the literature. Good agreement is achieved. The computational
efficiency of this method is also investigated for this kind of wave, which shows that the QALE-FEM can
be many times faster than other methods based on the same theory. Furthermore, 3D overturning waves
propagating over a non-symmetrical seabed or multiple reefs are simulated using the method. Some of
these results have not been found elsewhere to the best of our knowledge. Copyright q 2009 John Wiley
& Sons, Ltd.
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1. INTRODUCTION

Overturning waves are common physical phenomena in the sea, particularly in the nearshore area.
The destructive energy released by overturning waves may result in huge loads and cause severe
damage. For example, the overturning wave in the 2004 Great Sumatra Tsunami caused collapse of
numerous buildings and death of many people [1]. In order to reduce the losses due to such events,
many efforts, e.g. building submerged breakwaters/artificial reefs to protect the beach [2], have
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been and are still being made. The effectiveness of these efforts depends on a good understanding
of overturning waves. Owing to the strong nonlinearity, the linear, second-order or higher-order
approximate solutions (see, for example [3–5]) may not be sufficient to describe overturning waves.
This initiates an interest in fully nonlinear numerical simulation of these waves. For this purpose,
two classes of mathematical models have been employed, as summarized below.

The first one is called the Navier–Stokes (NS) Model, in which the NS equation and the
continuity equation (or equivalent pressure Poisson equation, see [6]) together with proper boundary
conditions are solved using numerical methods. These numerical methods may be split into two
groups: conventional mesh-based methods and meshless methods. The former mainly includes the
finite volume method [7–12], finite difference method [13] and cubic interpolated propagation
method [14]. The latter covers smoothed particle hydrodynamic [15–17], moving particle semi-
implicit method [18, 19] and particle finite element method [20]. However, no matter which method
is used, solving NS equations is always a time-consuming task, particularly for three-dimensional
(3D) cases. For more reviews on the NS Model, readers may be referred to the above cited papers.

The second one is called FNPT model, in which a Laplace’s equation for velocity potential
with fully nonlinear boundary conditions is dealt with. Compared with the NS model, the number
of variables as well as the complexity of the governing equations in this model is dramatically
decreased. As a result, the FNPT model needs much less computational resources than the NS
model and, therefore, is computationally much more efficient. Although viscosity is ignored in the
FNPT model, comparison with experimental data [6, 21–25] has shown that the results obtained
by using this model are sufficiently accurate for strong nonlinear waves up to overturning. Other
comparison between the FNPT model and the finite-volume-based NS model has also revealed that
the results from the former are closer to experimental data than those from the latter in the cases
with non-breaking overturning solitary waves [26, 27]. The reason may be that the finite-volume-
based NS model suffers from numerical diffusion, leading to energy loss over a long distance of
wave propagation, as indicated by Grilli et al. [28]. Therefore, the FNPT model is preferred over
the NS model in terms of both computational efficiency and accuracy, unless post-breaking waves,
i.e. after the overturning jet hits the free surface, are of main concern. In addition, a coupled
FNPT-NS model has recently been developed and applied to simulate 2D breaking waves [29, 30].
In this kind of model, the FNPT model is used to simulate the pre-breaking wave while the NS
model continues the calculation in the post-breaking stage.

This paper aims to present a method simulating 3D overturning waves, excluding the post-
breaking stage, thus the FNPT model is chosen. The problems formulated by the FNPT model are
usually solved by a time-marching procedure. In this procedure, the key task is to solve a boundary
value problem (BVP) by using a numerical method, e.g. boundary element method (BEM) or
finite element method (FEM). A brief review on this model for simulating nonlinear water waves
without overturning has been given by Ma and Yan [21]. Only the references related to overturning
waves are discussed here. The application of the FNPT model to numerically model overturning
waves can be traced back to Longuet-Higgins and Cokelet [31]. The earlier researchers focused
on 2D problems with a relatively simple computational domain, i.e. in deep water [32] and/or in
a spatially periodic domain [33, 34]. However, in the real sea, the seabed effects could be very
evident and the spatially periodic problems are rare to see. In later 2D studies, these limitations on
the fluid domain and on the water depth were removed [35–46]. The waves in these applications
include propagating oscillating waves (see, for example [44, 46]), solitary waves (see, for instance
[39, 41]) and wave groups [40, 45]. Apart from them, Zhao and Faltinsen [47] studied overturning
waves initiated by water entry of 2D bodies and Grilli and Subramanya [22] investigated 2D
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overturning waves generated by moving boundaries. 2D overturning waves are not the focus of
this paper. Reader may be referred to the cited papers above for more literature about them.

Compared with 2D overturning waves, numerical simulation of 3D overturning waves requires
much more computational resource and sophisticated techniques. Owing to this, the applications
of the FNPT model to 3D overturning waves are still rare. Xü and Yue [48, 49] modelled 3D
overturning Stokes waves in space–periodic numerical tank. In their model, the waves are generated
by specifying pressure distributions on the free surface. This model has been extended by Xue
et al. [50] to simulate crescent waves in water of infinite depth, which are generated by specifying
initial wave elevation and the velocity potential on the free surface based on a linear theory,
again in a spatially periodic domain. Grilli et al. [28] developed another FNPT-based model for
3D overturning waves in water of finite depth. Guyenne and Grilli [51] followed the work and
investigated the effect of seabeds on overturning solitary waves. By using this model, Grilli et al.
[52] simulated 3D tsunami waves generated by underwater landslides and Brandini and Grilli [53]
modelled 3D overturning freak waves over a flat seabed. Although these applications have shown
a good applicability of this model, its computational efficiency needs to be improved. For this
purpose, Fochesato and Dias [54] introduced a fast multipole algorithm, referred as fast BEM
method. The fast BEM method has successfully modelled 3D overturning solitary waves [54] and
freak waves [55]. Their numerical tests indicated that the fast BEM method can be 6 times faster
than the conventional BEM by Grilli et al. [28]. It could be considered as the fastest method at the
time for modelling 3D overturning waves. Although these methods show less limitation on the wave
generation and seabed geometries than those models based on infinite water depth and periodical
domain, it has not been used to investigate overturning of propagating oscillating waves, which
are more popular than solitary waves or freak waves in reality. In addition, the seabed geometry
in their applications is symmetrical about the central longitudinal vertical plane, a special case of
real seabed geometry. More investigations on other types of waves and non-symmetrical seabed
are interesting.

In the studies discussed above, the BVP is solved by using the BEM, either linear/low-order
BEM (see, for instance [44]), higher-order BEM (see, for example [28]) or the fast BEM [54, 55].
On the other hand, the FEM has been developed byWu and Eatock Taylor [56] andMa et al. [57, 58]
to solve fully nonlinear wave problems. As pointed out by them, the FEM requires less memory
and is therefore computationally more efficient for fully nonlinear waves than the BEM, which
will be confirmed again in this paper. However, for the FEM, a good computational mesh (good
element shapes and reasonable node distribution), covering the whole fluid domain, is required and
needs to be updated at every time step in order to conform to the motion of the free surface. For
the problems where the free surface is always single valued, i.e. without wave overturning, one
may use a structured mesh (for example [57, 58]), which needs a little CPU time to be updated
or regenerated. However, once overturning waves occur, an unstructured mesh (at least near the
overturning jet) is necessary to achieve accurate results. Repeatedly regenerating such a mesh may
take a major part of CPU time and so make the overall simulation very slow. To reduce the CPU time
spent on regenerating a suitable mesh, one may use a hybrid structured–unstructured mesh, which
is unstructured near the overturning jet and structured in the other region, as adopted by Turnbull
et al. [59] and Heinze [60] for 2D wave–structure interaction problems without overturning. But this
technique still needs to regenerate the unstructured part and needs to know where the overturning
occurs a priori. Apart from the challenge associated with the mesh, it is crucial to use a robust
method to evaluate the fluid velocities on the free surface because they are needed to update the
information on the free surface at every time step. Several methods for this purpose have been
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developed in the FEM. They mainly include the direct method (solving the velocity in a similar
way to the velocity potential) developed by Wu and Eatock Taylor [56] and followed by Wang and
Wu [61], Wang et al. [62], the finite difference method [63, 64], the three-point method suggested
by Ma et al. [57] (see also [65]) and the cubic spline method suggested by Sriram et al. [66].
Only the direct method and the three-point method have been employed for 3D nonlinear water
waves in those papers. The three-point method has been proved more robust and accurate than
the former. However, this method is originally developed for meshes with special structures, i.e.
at least two nodes lying on the vertical line through each free-surface node, which is hard to be
satisfied when using unstructured meshes. Perhaps due to these two challenges, i.e. regenerating
arbitrary unstructured meshes and evaluating the fluid velocities, the conventional FEM has not
been demonstrated to model overturning waves, even in 2D cases. Ma and Yan [21] have recently
devised a new method called QALE-FEM (quasi-arbitrary Lagrangian–Eulerian finite element
method). In this method the complex unstructured mesh is generated only once at the beginning
of the calculation and is moved at other time steps to conform to motions of boundaries by using
a novel and robust spring analogy method purpose-developed for water waves. This feature allows
one to use an unstructured mesh with any degree of complexity without the need of regenerating it.
Furthermore, a velocity calculation method suitable for the arbitrary moving unstructured meshes
is also developed based on the three-point method. The QALE-FEM has been successfully used
to simulate nonlinear waves and its interactions with complicated seabeds [21, 25, 67] and free
responses of floating bodies to steep waves [68–70]. Ma and Yan [21] compared the QALE-FEM
with the conventional FEM in terms of computational efficiency and accuracy in the cases for
periodic bars on the seabed. They concluded that the QALE-FEM may require less than 15% of
the CPU time required by the conventional FEM to achieve the same level of accuracy.

In this paper, the QALE-FEM is extended to simulate 3D overturning waves before the over-
turning jet hits the free surface ahead of the wave. In order to tackle the challenges associated with
overturning waves, two new numerical techniques are developed. These include special techniques
for moving mesh and for evaluating the fluid velocity in the cases for 3D overturning waves. The
accuracy of the QALE-FEM with the newly developed techniques is studied by comparing the
numerical results with experimental data and other results available in the public domain. Good
agreement is achieved. The convergent property and the computational efficiency are also inves-
tigated. Based on these, numerical investigations on solitary waves over a 3D non-symmetrical
sloping seabed and transient oscillating waves propagating over artificial reefs, which have not
been made before to the best of our knowledge, are presented.

2. MATHEMATICAL MODEL

In this paper, the computational domain is chosen as a rectangular tank. Two types of methods are
used to generate nonlinear waves. The first one is to utilize a piston or paddle wavemaker which is
mounted at the left end of the tank (see Figure 1). The second one is to specify the initial condition
for the position of and the velocity potential on the free surface. In this case, the wavemaker shown
in Figure 1 is treated as a fixed boundary. Reflective boundary conditions are implemented on
the lateral boundaries while the absorbing boundary condition is applied at the right end of the
tank unless mentioned otherwise. For the absorbing boundary condition, a damping zone with a
Sommerfeld condition is applied, as sketched in Figure 1. Details can be found in [57]. Arbitrary
forms of seabed geometry may appear. A Cartesian coordinate system is adopted with the oxy on
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Figure 1. Sketch of fluid domain.

the mean free surface, the oxz coinciding with the central longitudinal vertical plane of the tank
and the z-axis being positive upwards.

Similar to the usual formulation for the FNPTModel, the velocity potential (�) satisfies Laplace’s
equation

∇2�=0 (1)

in the fluid domain. On the free surface z=�(x, y, t), the velocity potential satisfies the kinematic
and dynamic conditions in the following Lagrangian form:

Dx

Dt
= ��

�x
,

Dy

Dt
= ��

�y
,

Dz

Dt
= ��

�z
(2)

D�

Dt
=−gz+ 1

2
|∇�|2 (3)

where (D/Dt) is the substantial (or total time) derivative following fluid particles and g is the
gravitational acceleration. In Equation (3), the atmospheric pressure has been taken as zero. On
all rigid boundaries, such as the wavemaker, the velocity potential satisfies

��

�n
=n·U(t) (4)

where U(t) and n are the velocity and the outward unit normal vector of the rigid boundaries,
respectively.

The problem described by Equations (1)–(4) is solved by using a time-step-marching procedure.
At each time step, the BVP for the velocity potential is solved by the FEM. The details about
the FEM formulation have been described in our previous publications [21, 57] and will not be
repeated here.

3. SUMMARY OF THE QALE-FEM

As indicated in the Introduction, the QALE-FEM devised by Ma and Yan [21] will be further
developed in this paper to deal with 3D overturning waves. This method for problems about waves
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without floating bodies includes two key elements in comparison with the conventional FEM
method presented in [57]: (1) the scheme for moving mesh and (2) the method for estimating the
fluid velocity on the free surface. All the elements have been described in [21]. For completeness,
the two elements presented in our previous related papers will be summarized in the next two
sub-sections before presenting new developments.

3.1. Scheme for moving mesh

In the QALE-FEM, the computational mesh is generated only once at the beginning of the
calculation and is moved at other time steps to conform to moving boundaries. The initial mesh used
is unstructured and is generated using an in-house mesh generator based on the mixed Delaunay
triangulation and the advancing front technique (see, for instance [71]). To reflect the complexity
of the fluid domain, one may assign a suitable representative mesh size (ds) on the free surface to
the mesh generator, which indicates the characteristic distance between two connected nodes. For
example, ds would be equal to approximately one-thirtieth of a wavelength. It should be noted
that the specified mesh sizes may be different in the x-direction (dx) and in the y-direction (dy).
In such a case, ds=min(dx,dy). The mesh generator also needs a number of element layers (Nz)

in the vertical direction, which is used to evaluate the vertical representative mesh size using an
exponential function-based formulation suggested by Wu and Eatock Taylor [56]. Although ds
and Nz are not precisely equal to the real mesh size and the real number of layers (actually the
number of layers may be different at different positions), it largely indicates how fine the mesh is.
It is noted that the QALE-FEM can also accept meshes from other mesh generators.

For moving the mesh at every time step, a novel methodology is suggested and adopted, in which
interior nodes and boundary nodes are separately considered; and the nodes on the free surface
and on rigid boundaries are treated differently. Nodes on the free surface are further split into
two groups: those on waterlines and those not on waterlines (inner-free-surface nodes). Different
methods are employed for moving different groups of nodes.

To move the interior nodes that do not lie on boundaries, a spring analogy method is used. In
this method, nodes are considered to be connected by springs and the whole mesh is then deformed
like a spring system. Specifically, the nodal displacement is determined by

�ri =
Ni∑
j=1

kij�r j

/
Ni∑
j=1

kij (5)

where �ri is the displacement of node I ; kij is the spring stiffness and Ni is the number of nodes
that are connected to node I . As pointed out by Ma and Yan [21], the spring analogy method was
originally adopted to cope with aerodynamic problems without the free surface. To apply it to the
problems associated with a large deformation of the free surface, the authors of this paper have
considerably modified the method by proposing a robust and distinctive method for computing the
spring stiffness:

kij=k0ij�
f s�bs (6)

in which kij is the spring stiffness and k0ij is given by

k0ij=
1

l2ij
(7)
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where lij is the distance between nodes i and j . � f s and �bs are the correction functions associated
with the free surface and the moving rigid boundaries, respectively. �bs is taken as 1 in the cases
without floating bodies [21]. � f s is defined as

� f s =e� f [1+(zi+z j )/2d] (8)

where zi and z j are the vertical coordinates of nodes i and j ; d is the water depth; and � f is a
coefficient that should be assigned a larger value if the springs are required to be stiffer on the
free surface. Numerical tests indicate that � f =1.7 is suitable.

The positions of nodes on the free surface and waterlines are determined by physical boundary
conditions, i.e. following the fluid particles at most time steps. The nodes moved in this way may
become too close to or too far from each other. To prevent this from happening, these nodes are
relocated at a certain frequency, e.g. once every 40 time steps. When doing so, the nodes on the
waterlines are re-distributed by adopting a principle for a self-adaptive mesh, i.e. the weighted
arc-segment lengths satisfy

�i�si =Cs (9)

where � is a weight function and can be taken as 1, �si the arc-segment length between two
successive nodes and Cs a constant.

In order to relocate the inner-free-surface nodes, they are first moved using the spring analogy
method in the projected plane of the free surface, resulting in new coordinates x and y; and then the
elevations of the free surface corresponding to the new coordinates are evaluated by an interpolating
method. In order to take into account of the local gradient of the free surface, however, the spring
stiffness for moving the nodes in the x- and y-directions is determined, respectively, by:

k(x)
ij = 1

l2ij

√
1+

(
��

�x

)2

and k(y)
ij = 1

l2ij

√
1+

(
��

�y

)2

(10)

where k(x)
ij and k(y)

ij are the spring stiffness for moving the free surface nodes in the x- and

y-directions, respectively; (��/�x) and (��/�y) the local slopes of the free surface in the corre-
sponding directions. It is noted that if a floating body is involved, Equation (10) should be changed
to the one given by Ma and Yan [68].
3.2. Calculation of fluid velocity on the free surface

The mesh used in the QALE-FEM is arbitrarily unstructured and moves during the calculation.
An effective method to calculate the fluid velocity on the free surface under this condition was
developed in [21]. In this method, the velocity at a node I with neighbours Jk (k=1,2,3, . . . ,m)

on the free surface is split into normal and tangential components. The normal component (vn) of
the velocity is determined by a three-point finite difference scheme:

vn =
[

2

3hI1

(
2hI1+hI2

hI1+hI2
+ 1

2

)
�I −

(
2

3hI2
+ 1

hI1

)
�I1+ 2

3hI2

(
hI1

hI1+hI2

)
�I2

]
n (11)

where n is the unit normal vector of the free surface at the node, I1 and I2 represent the two points
selected along the normal line; hI1 and hI2 are the distances between I and I1 and between I1
and I2, respectively; and �I , �I1 and �I2 denote the velocity potentials at the node and the two
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points; �I1 and �I2, are found by a moving least-square method [25]. After the normal component
of the velocity is determined, the tangential components of the velocity are calculated using a
least-square method, in which each of the equations is given by

v�x ·lIJk +v�y ·lIJk = lIJk ·∇�−vn ·lIJk (k=1,2,3, . . . ,m) (12)

where lI Jk is the unit vector from node I to node Jk ; v�x and v�y represent the velocity components
in the sx and sy directions, respectively. sx and sy can be any two orthogonal unit vectors in the
tangential plane of the free surface at node I . In this paper, they are determined by sx =ey×n and
sy =n×sx if |ey×n| �=0; otherwise sy =n×ex , sx =sy×n, where ex and ey are the unit vectors
in the x- and y-directions, respectively. Obviously, for 2D cases, this method is the same as that
described by Ma and Yan [21].

4. NUMERICAL TECHNIQUE FOR MOVING MESH ASSOCIATED WITH
3D OVERTURNING WAVES

The new developments in this paper for dealing with problems concerning 3D overturning waves
will be presented in the next two sections. They mainly contain the numerical techniques for
moving the mesh and for computing the fluid velocity on the free surface when overturning occurs.
The first one is presented in this section.

The basic strategy and principle to move the mesh are similar to that summarized above.
Nevertheless, special consideration is devoted to the mesh near overturning jets when moving
interior nodes and redistributing nodes on the free surface, which is discussed in the following
two subsections.

For clarity, special nodes and elements are named before moving on. If a node is on the free
surface and near or at the tip of an overturning jet, it is called Jet Node. One of them is shown in
Figure 2 as a solid circle. In addition, if an element has one face on the free surface, the face is
called outer face and the element is called free surface element.

4.1. Moving interior nodes

In the cases involving 3D overturning waves, the interior nodes are moved by the spring analogy
method summarized above. Nevertheless, the interior nodes near jet nodes demand special care so
as to result in elements of good quality. For this purpose, the stiffness of the springs in this area

is assigned a relatively larger value. To do so, � f s in Equation (6) is changed to

� f s =e� f �1+(zi+z j )/2d�(1+�jet�x�y�z) (13)

Overturning jet 

jet
xD jet

zD

Figure 2. Illustration of an overturning jet and Jet Nodes.
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where �jet is a coefficient which is non-zero only if the free surface near the node concerned
becomes vertical or overturning; �x , �y and �z are correction functions in the x-, y- and z-direction,
respectively. They are all in a similar form and one of them is given by

�x =
⎧⎨
⎩
1−dx/D

jet
x dx<Djet

x

0 dx�Djet
x

(14)

in which subscript x can be replaced by y or z to give �y and �z . dx (dy or dz) is the distance

between the centre of Spring i- j and the nearest jet node in the x- (y- or z-) direction; Djet
x ,

Djet
y and Djet

z indicate the maximum distance in different directions (Figure 2). According to the

numerical tests so far, �jet=0.5, Djet
x =Djet

y =10ds and Djet
z =0.5H are appropriate, where H is

the wave height.
Obviously, the above method works only if all the Jet Nodes are known. For 3D overturning

waves, there may be many Jet Nodes. To find them, the following parameter is calculated for each
free surface node, e.g. Node i :

cmin,i =min(nJ ·nK ), J,K =1,2,3, . . . ,NEsf ,i , J �=K (15)

where subscripts J and K denote the element numbers, NEsf ,i are the total number of all the free
surface elements connected to node i , nJ is the outward unit normal vectors of the outer face of
a element. In this paper, if cmin,i<0.5, Node i is considered as a Jet Node.

Furthermore, when a wave is overturning, the free surface near the overturning jet may have
an extremely large deformation (Figure 2) which makes the elements easier to distort than in
the earlier applications [21, 67, 69, 70]. In order to preserve the element shape during the mesh
moving procedure, the ability of resisting torsion of elements needs to be enhanced in such an
area. To do so, one may attach torsional springs to the vertexes of every element (referred as
the torsional spring analogy method [72]) or introduce additional linear springs that resist the
motion of an element vertex towards its opposite face (referred as the ball-vertex spring analogy
method [73]). However, the force transformation and displacement conversion in the torsional
spring analogy method and the additional springs in the ball-vertex spring analogy method consume
extra computational resources and therefore reduce the efficiency. Alternatively, this aim can also
be achieved by modifying the linear spring stiffness, considering the angular or volume changes of
the elements, which needs less computational cost. For example, Zeng and Ethier [74] developed
a 3D semi-torsional spring analogy method where the facing angle of each spring is taken into
account when calculating the spring stiffness. This idea is extended here by introducing coefficients
related to the quality of elements, i.e. the k0ij in Equation (7) and �bs in Equation (6) are replaced by

k0ij=
1

l2ij
+�

NEij∑
m=1

1

sin2 	ijm
(16)

�bs =1/qijmin (17)

where NEij is the total number of elements sharing spring i− j , 	ijm is the angle between two faces

of the mth element as shown in Figure 3, � is an coefficient. qijmin is the minimum value of the
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i 

j ij

Figure 3. Facing angle in a tetrahedron element.

quality indexes of all the elements sharing spring i− j . The quality index for a single element e
is defined as

qe= 3Re
i

Re
c

(18)

where Ri and Rc are the inradius and circumradius of the element, respectively. This quality index
is based on the fact that the best tetrahedron element is the regular tetrahedron whose circumradius
is three times of the inradius (see, for example [25, 75]). The range of its value is from 0 to 1. It
equals to 1 for a regular tetrahedron and 0 for an element whose 4 nodes are located in one plane.
A similar correction to Equation (17) was also made for problems associated with floating bodies
by Ma and Yan [68].

According to our numerical investigations [25], the coefficient � is chosen by

�=
{
0, qmin>q0

1, qmin�q0
(19)

where q0 is a control parameter equal to 0.02; qmin is the minimum value of the quality indexes
of all elements in the whole computational domain. It can be seen from Equations (16) and (19)
that when the worst element has a quality index less than 0.02, the term

NEij∑
m=1

1

sin2 	ijm

becomes effective. In addition, dividing qijmin in Equation (17) renders springs stronger when the
quality index is reduced. All these help enhance the quality of elements.

4.2. Redistributing inner free surface nodes

As discussed by Yan and Ma [68, 69], the method to redistribute free-surface nodes outlined in
Section 3.1 can only deal with problems where the free surface can be expressed as a single-
valued function of x and y, e.g. in cases without overturning waves. The authors of this paper
have developed an approach to redistribute nodes on a multi-valued body surface [68]. The same
idea will be used here to redistribute the inner free surface nodes when overturning occurs. This
approach is based on a local coordinate system formed by the local tangential lines and normal
line at the node concerned. In this local coordinate system, the surface is always single valued, i.e.
there is only one intersecting point between the free surface and a line parallel to the local normal
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line (and, of course, perpendicular to the local tangential lines). A node, e.g. i , is first moved in
the tangential plane formed by tangential lines by

�risi =
Ni∑
j=1

kij�r jsi

/
Ni∑
j=1

kij (20)

where �risi represents the displacement of node i in the tangential plane. After that, a new position
of the nodes on the free surface is found by interpolation in the local coordinate system. In order to
consider the effect of the overturning jet, the spring stiffness for moving inner-free-surface nodes
is assigned as

kij= 1

l2ij
(1+�jet�x�y�z) (21)

where �jet, �x , �y and �z are the same as those in Equation (13). It is noted that the effect of the
local gradient of the free surface involved in Equation (10) is implicitly taken into account here
because of the use of the local coordinate system.

5. NUMERICAL TECHNIQUE FOR CALCULATING FLUID VELOCITY
NEAR OVERTURNING JETS

The principle for calculating the fluid velocity on the free surface is similar to that summarized
in Section 3.2, in which the fluid velocity is split into the normal and the tangential components
and different schemes are used to calculate different velocity components. The accuracy of the
normal velocity component in Equation (11) depends on the estimation of �I1 and �I2, for which
a moving least-square method is used. For a node near the overturning jet, interior nodes around
Points I1 and I2 may be only few and unevenly distributed about the normal line, as shown in
Figure 4(a). This degrades the accuracy of the velocity calculation. In order to tackle the problem,
a special treatment is applied in such a situation, which is similar to that for the nodes near the
rigid boundary suggested by Ma and Yan [21]. That is, Equations (11) and (12) are still used, but
the normal vector n is replaced by another unit vector nr (Figure 4(b)). Accordingly, instead of
tangential vectors sx and sy , two other vectors (srx and sry) perpendicular to nr are employed.

(b) 

I2

rn
n

J1J2

J3
i

Free surface 

I1

I2

n

J1J2

J3
i

Free surface 

I1

(a) 

Figure 4. Elements near the overturning jet (solid circle: free surface nodes; hollow circle: interior
nodes; solid triangles: point I1 or I2; dashed circle: influence domain of I2 for estimating the

velocity potential at this point).
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To describe how to define nr , take node i as an example (Figure 4(b)). It lies on the free surface
and the interior nodes J1, J2, J3, . . . , JM are connected with it. The angle �iK between n and each
vector of xi −xJk (K =1,2, . . . ,M) is estimated by

cos�iK =n·(xi −xJk )/|(xi −xJk )| (22a)

If JK min is the interior node whose angle is �iKmin=min{�i1,�i2, . . . ,�iM}, nr is then chosen to
pass the node and estimated by

nr =(xi −xJK min)/|xi −xJK min | (22b)

After determining nr , srx and sry are given in the similar way as for sx and sy in Equation (12), i.e.
srx=ey×nr and sry=nr ×srx if |ey×ny | �=0; otherwise sry=nr ×ex , srx=sry×nr . To determine
the two points along the new vector nr , the values of hI1 and hI2 in Equation (11) are assigned
to be 0.6 times the distance between node i and node JK min. It can be understood that after
applying the special treatment, the two points I1 and I2 should have more interior nodes in their
influence domain for estimating the velocity potential at this point, more evenly distributing about
the line nr , than those in Figure 4(a) and therefore the accuracy of the velocity is improved.

6. VALIDATION AND CONVENGENCE INVESTIGATION

In this section, the QALE-FEM is validated by comparing its numerical predictions with published
results obtained by using other numerical methods or experiments. Owing to the fact that almost
all the experiments regarding overturning waves are two dimensional, some 2D cases will be
considered together with 3D cases. For a 2D case, the width of the tank is taken as 2d and
all parameters do not vary along the y-direction, making it a y-independent 3D problem in
order to use the 3D QALE-FEM. Effort is also devoted to the investigations on the convergent
properties of this method. For all the cases presented below, the parameters with a length scale
are nondimensionalized by the water depth d and other parameters by g and d , such as

t→�
√
d/g and 
→


√
g/d

where � is the nondimensionalized form of the time.

6.1. Selection of time steps

In order to achieve convergent results, the time step must be properly selected. It can be understood
that the required time step (��) is a function of the characteristic minimum mesh size (dsmin) and
the characteristic particle velocity (Uc). It may be determined by

��=ct
dsmin

Uc
(23)

which is similar to the well-known Courant condition, where ct is a coefficient less than 1. In
the correction function for spring stiffness in Equation (13), the maximum value of the term
1+�jet�x�y�z is 1+�jet, occurring near the overturning jets, and its minimum value is 1, occurring
in other areas away from the overturning jets. In addition, dsmin should occur near the overturning
jets. Therefore, it may stand to reason that dsmin should be related to the representative mesh
size (ds) and can be estimated by dsmin=ds/(1+�jet).
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For periodic waves, ds can be correlated to �/Nm , where � is the characteristic wavelength
estimated by �=(2�/k) and 
2=k tanh(k) for a specified wave frequency 
, and Nm is the
averaged number of elements in one wavelength. In such a situation,Uc may be chosen asUc=�/T
(the celerity of a linear wave) and thus Equation (23) becomes

��= ct
1+�jet

T

Nm
(24)

For solitary waves that do not have a finite wavelength, one may use Uc=1 and obtain

��= ctds

1+�jet
(25)

The last equation is similar to that in [28, 41] for determining the time step when simulating
solitary waves by using the BEM.

According to our numerical investigations [25] for regular water waves without overturning,
where �jet=0, the maximum time step for the QALE-FEM to achieve acceptable results is T/64
for strongly nonlinear waves (wave steepness up to 0.1) and T/32 for linear waves if the initial
mesh size is about �/30. Based on this and Equation (24), ct is not necessarily less than 0.45
for waves without overturning. However, the value of ct may not be suitable for the cases with
overturning.

To test what value of ct is suitable for the QALE-FEM to model overturning waves, the case
studied by Grilli et al. [41] is considered here, which was also used to validate simulation of 3D
overturning waves by Grilli et al. [28]. In this case, the length and width of the tank are 18 and 2,
respectively. A seabed with the slope of 1:15 in the x-direction starts from x0=5.4 and truncated at
xt =18. As in the above two references, the solitary wave is initialized by using Tanaka’s method
[76] which gives ‘exact’ solution for the wave profile, the velocity potential and the fluid velocity
on the free surface. The initial wave height (H) is 0.6 and the initial crest is located at x=5.5.
ds is selected as 0.05 in both the x- and y-directions and Nz =12. The numerical results by the
QALE-FEM are first compared with those obtained by Grilli et al. [28] to ensure the computation
to be sufficiently accurate. In this comparison, ct is taken as 0.45 (time step is 0.015). The free
surface profiles at two different instants are plotted in Figure 5. Curve (a) corresponds to the
state that the tangential direction of the front face of the crest tends to become vertical. Curve (b)
shows the results after the overturning wave occurs. At both instants, the QALE-FEM leads to
almost the same results as the BEM model.

7 8 9 10 11 12
0.5

1

1.5

2

x-x0

z

QALEFEM
2D BEM(Grilli et al. [28])

a 
b

Figure 5. Comparison of the wave profiles from the QALE-FEM and the BEM for 2D solitary wave at
different instants (a: �≈7.55; b: �≈8.16; H =0.6; slope: 1

15 ).
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The cases with different values of ct are then considered. For this purpose, they are chosen as
0.375, 0.45, 0.5 and 0.6, respectively. The wave profiles at �≈8.16 obtained by using these values
of ct are plotted in Figure 6. It is found that the differences between all the cases shown in this
figure are negligible. However, the computation with ct =0.6 quickly ceases after this instant. This
indicates that ct should not be larger than 0.5 and not necessarily less than 0.375 for simulating
overturning waves in this case by using the QALE-FEM. This range of the ct value for the present
method is not much different from (0.45–0.5) that suggested by Grilli et al. [28] for the BEM.

6.2. Numerical validation

In this subsection, the method will be validated by using both 2D and 3D solitary waves in different
configurations. 2D cases are first considered, for which experimental results are available.

6.2.1. Overturning of 2D solitary waves over seabeds with different geometries. A preliminary
comparison with 2D results of Grilli et al. [28] has been presented in the above subsection to
investigate the proper value of ct , which showed a good agreement. Two other cases are presented
here to further show the accuracy of the QALE-FEM.

In the first case, a 2D solitary wave propagating over a submerged step is considered. The
configuration is sketched in Figure 7, in which P2, P3 and P4 are wave gauges. The similar set-up
has been used by Yasuda et al. [24] in their experiment, whose results have been used by many
researchers for the purpose of validation (e.g. Helluy et al. [26] and Devrard et al. [27]). In our
study, the parameters are the same as in Devrard, et al. [27] but they are here nondimensionalized
by the water depth, which is 0.31m in that reference. The left side of the tank is located at x=0.

10 10.2 10.4 10.6 10.8 11 11.2 11.4 11.6 11.8 12

1

1.2

1.4

1.6

1.8

x-x0

z

ct=0.6

ct=0.5

ct=0.45

ct=0.375

Figure 6. Free surface profiles at �≈8.16 obtained by using different time steps (H =0.6; slope: 1
15 ).

step

0.424 

x

z

6.45

P2 P3 P4 

1.66 1.63 Absorbing 
boundary

0.84

Figure 7. Sketch of the configuration for the case with a submerged step.
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Figure 8. Wave elevation recorded by different gauges (H =0.424; step height: 0.848):
(a) gauge P2 and (b) gauge P3.

The submerged step with a height of 0.848 starts from x0=12.9. The solitary wave is generated
by specifying the initial position of and the velocity potential on the free surface given by using
Tanaka’s method [76] with the initial crest located at x=6.45 and the wave height (H) being 0.424.
An absorbing boundary condition is applied at the right side of the tank. ds is taken as 0.05 on
the free surface and Nz is specified as 12. ct in this case is taken as 0.5. Figure 8 shows the wave
histories recorded at wave gauges P2 and P3. For the purpose of comparison, the experimental data
from Yasuda et al. [24] and the numerical results from the BEM by Devrard et al. [27] are plotted
together. From this figure, it is observed that the results from the QALE-FEM agree well with
those from the BEM method, and that both numerical results are very close to the experimental
data.

In the second case, the solitary wave is generated by a flap paddle wavemaker with the motion
angle and angular velocities specified. The same case in the experiment by Kimmoun et al. [77]
is used as described by Grilli et al. [43]. In our computation, the wavemaker motion parameters
are taken from Grilli et al. [43]. By using these parameters, the height of the generated solitary
wave is about H =0.135. In this case, the numerical tank has the length of 18 and the width
of 2. A composite sloping seabed starts from x0=6.45. The slope of the seabed are 1

6 from x= x0
to x= x0+2 but becomes 1

15 when x>x0+2. ds is 0.04 and the time step is determined again
by using ct =0.5. Figure 9 shows the comparison of free surface profiles near the overturning
jet calculated by the QALE-FEM with the experimental data from Kimmoun et al. [77] and the
numerical results by the BEM from Grilli et al. [43]. A similar agreement with numerical results
by the BEM and the experimental data to the case shown in Figure 8 is observed from this
figure.

6.2.2. Overturning of a solitary wave over a 3D symmetrical seabed. Experiments on 3D over-
turning solitary waves have not been found. The numerical results from Grilli et al. [28] for solitary
waves propagating over a 3D sloping ridge are used here to validate our method. The 3D ridge is
expressed as

z=sc(x−x0)sech
2(kc y) (26)
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Figure 9. Free surface profiles recorded at different time steps (H =0.135).

where x0 is the location where the sloping seabed starts, sc is the slope at y=0 and sech2(kc y) is
the transverse modulation of the slope along the y-direction depending on the coefficient kc which
is constant with respect to y in [28]. That means that the seabed geometry in those applications is
symmetrical about y=0. In this case, the length and the width of the tank are 19 and 8, respectively.
The ridge starts from x0=5.225. sc is 1

15 and kc is taken as 0.25. The solitary wave is generated
by using the same method as for Figure 8. The wave height is 0.6 with the initial crest located at
x=5.7. ds is specified as 0.07 for generating the mesh and the value of ct is 0.5 for determining
the time step.

Figures 10 and 11 show the free surface profiles on the side walls (y=±4) and in the central
plane (y=0) of the tank at different instants. For this case, Grilli et al. [28] gave the results up to
�≈8.57 and presented the corresponding free surface profiles at �=8.25 and 8.57. Guyenne and
Grilli [51] used a finer grid and obtained results up to �=9.14. We took the results at �=8.25 and
8.57 from Grilli et al. [28] and those at �=7.89 and 8.827 from Guyenne and Grilli [51] for the
comparison. Obviously, the results shown in Figure 10, well before overturning, are almost the
same as those from the papers using the BEM. For the free surface profiles at y=0 in Figure 11,
the Curves (c) and (d) show slight differences near the overturning jet. In order to analyse the
accuracy, the relative errors in mass (m) and energy (e) are estimated by using the same method
as in Grilli et al. [28]. The relative errors in mass at these two time steps are 0.09% and 0.2%,
respectively, and the corresponding relative errors in energy are 0.16% and 0.43%, respectively.
All the errors can be considered as very small.

6.3. Convergence tests on initial representative mesh sizes

In the cases shown above, the solitary waves with different heights and over different seabeds are
modelled by using specified mesh sizes. As discussed in our previous papers [68, 69], the main
factors that affect the convergence property of the QALE-FEM are the time step and the mesh size
for the cases without floating bodies. In Section 6.1, the effect of the time steps on the results has
been investigated. In this section, discussions are devoted to the effect of the representative mesh
size (ds) to ensure the numerical results given are convergent. Although convergence investigations
have been made for all the cases shown in this paper, only the analysis for the 3D case shown in
Figure 11 is presented in this section. For this purpose, the values of ds are selected to be 0.05,
0.07, 0.085 and 0.1. All other parameters remain the same as for Figure 11.
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Figure 10. Free surface profile at y=±4 (H =0.6; sc = 1
15 ; kc =0.25; ds=0.07; Curve a: �≈7.89;

b: �≈8.25; c: �≈8.57; d: �≈8.827; thick solid line represents the seabed geometry).
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Figure 11. Free surface profile at y=0 (H =0.6; sc = 1
15 ; kc =0.25; ds=0.07; Curve a: �≈7.89;

b: �≈8.25; c: �≈8.57; d: �≈8.827; thick solid line represents the seabed geometry).
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Figure 12. Free surface profile at y=0 in different instants (H =0.6; sc = 1
15 ; kc =0.25;

a: �≈7.89; b: �≈8.25; c: �≈8.57).

Figure 12 shows the free surface profile at y=0. The results for all the cases corresponding
to different values of ds agree well with each other, though there is visible difference near the
overturning jet in Curves (b) and (c) between the results of ds=0.1 and others. Even using
the coarsest mesh (ds=0.1), the relative errors in the mass and energy at �≈8.57 are about
0.11% and 1.21%, respectively. Therefore, ds=0.1 is acceptable for the purpose of predicting
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the occurrence of the overturning before forming a jet. However, for studying the properties of
overturning with a jet, finer meshes (ds�0.085) are preferred for this case.

The investigation in this subsection demonstrates that the representative mesh sizes selected
in the previous subsection are appropriate. However, it is noted that the appropriate mesh size is
problem dependent and it must be carefully selected for different cases as in all other numerical
methods.

6.4. Computational efficiency

All comparisons of the numerical results obtained by the present method with the experimental
data and the results by other methods may lead to one conclusion, i.e. the QALE-FEM can simulate
overturning waves at the same level of accuracy as the BEM method based on the same FNPT
model. One may ask how about its efficiency. In this subsection, attention is concentrated on
discussions about the computational efficiency of the QALE-FEM. Ma and Yan [21] pointed out
that the QALE-FEM might use only 15% of the CPU time required by the conventional FEM. Its
efficiency is now compared with the BEM using the case shown in Figure 11.

As mentioned before, Grilli et al. [28] developed a high-order BEM model that is believed to be
the most efficient model for overturning waves at that time. To obtain the results up to �≈8.57 for
the case in Figure 11, they used a coarser quadrilateral grid (50×20×4) for the first 70 time steps
and then used a finer grid (60×30×4) for the next 120 time steps. The total CPU time spent on the
two stages is about 52.8 h on a supercomputer (CRAY-C90). Fochesato and Dias [54] developed
a fast BEM method, which may be 6 times faster than the conventional BEM [28] as pointed out
by the authors. Their calculations for the same case were also split into two stages. They used a
coarser grid (40×10×4) with 1422 boundary nodes for the first stage (�<6, about 54 time steps)
and then a finer grid (60×40×4) with 6022 boundary nodes for the rest of calculation (200 time
steps). Totally, they spent about 19 h to achieve the results up to �≈8.57 by using a PC (2.2GHz
processor, 1G RAM). Our simulations of the same case are run on a PC with 2.53GHz processor
and 1G RAM. The computer is largely similar to that used by Fochesato and Dias [54], though the
processor is slightly faster. The CPU time taken by the QALE-FEM for simulation up to �≈8.57
and the relative error in the cases with different representative mesh sizes are displayed in Table I.
In some of these cases, the representative mesh size is different in the x- and y-directions, i.e.
dx �=dy, to show more variations. As could be seen from the table, the QALE-FEM takes only
0.91 h (or 54min) to produce the results with acceptable errors in mass and energy (m =0.1%
and e=0.26%, respectively). Even to achieve higher accuracy of m =0.09% and e=0.16%,
which are smaller than those errors given by Fochesato and Dias [54], the CPU time taken by the

Table I. Computational efficiency of the QALE-FEM for the case shown in Figure 11.

dx dy Nt Nb �� CPU/step (s) Total (h) m (%) e (%)

0.100 0.100 139 239 38 106 0.03333 9.0 0.65 0.11 1.21
0.085 0.100 164 025 44 550 0.02833 10.2 0.91 0.10 0.26
0.085 0.085 235 125 52 650 0.02833 14.5 1.22 0.10 0.26
0.070 0.100 230 384 53 856 0.02333 14.0 1.41 0.09 0.17
0.070 0.070 314 160 69 088 0.02333 18.0 1.80 0.09 0.16
0.050 0.050 448 437 98 334 0.01667 26.6 3.81 0.03 0.09
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QALE-FEM is only 1.8 h (or 108min). Therefore, for this particular case, the QALE-FEM can be
at least 10 times faster than the fast BEM method.

6.5. Application: 3D overturning waves over complex seabeds

So far, all 3D results presented are symmetrical about the y=0 plane. It is understandable that
the overturning properties, such as when and where the overturning occurs, will be different if
the seabed is non-symmetrical about the y=0 plane. To see how different the properties are and
to show the flexibility of the QALE-FEM, the method is employed to model solitary waves over
a non-symmetrical seabed about y=0. In this investigation, the length and the width of the tank
are the same as those in Figure 11. The seabed geometry is also expressed by Equation (26) with
the same x0 and sc, which are 5.225 and 1

15 , respectively, but with different variation of kc. In
this case, the kc for y>0 (referred as k+

c ) is 0.25, the same as Figure 11; however, that for y<0
(referred as k−

c ) is 1.0. The representative mesh size is taken ds=0.07.
Figure 13 shows the free surface profiles recorded at �≈8.57, the same instant as shown by

Curve c in Figure 12, for cases with different k−
c . One can see from this figure, that at this instant,

the overturning jet in the case with k−
c =1.0 (Figure 13(b)) is not evident. However, that in the

case with k+
c =k−

c =0.25 (Figure 13(a)), the same case as shown in Figure 11, seems to be well
developed. This implies that the breaking time varies as the change of seabed geometry. To further
show how the overturning jet develops in the case with non-symmetrical seabed, the free surface
profiles at two other instants after overturning starts are plotted in Figure 14.

As can be seen, the free surface profiles in Figure 14 are non-symmetrical about y=0, as
expected. It is also observed that the overturning does not start to occur at y=0; instead, it occurs
in the area y>0. This is quite different from the above symmetrical cases in which the overturning

Figure 13. Free surface profiles at �≈8.57 in the cases with different k−
c (H =0.6; sc = 1

15 ; k
+
c =0.25;

the colour bar represents the speed (|∇�|) on the free surface): (a) k−
c =0.25 and (b) k−

c =1.0.
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Figure 14. Free surface profiles at different instants after overturning over non-symmetrical seabed
(H =0.6; sc = 1

15 ; k
+
c =0.25 and k−

c =1.0; the colour bar represents the speed (|∇�|) on the free
surface): (a) �≈8.95 and (b) �≈9.16.

always starts to occur at y=0. This is clearer in Figure 15 that shows the free surface profiles at
several longitudinal vertical planes with different y-coordinates.

Figure 15(a) evidently shows that the wave front at y=0.8 reaches the farthest position in the
x-direction at �≈8.55 while those at the other two longitudinal planes, i.e. at y=0.5 and 1.1
(which are symmetrical about the plane at y=0.8) are behind it and both are very close to each
other. All of them are considerably farther than the wave front at y=0. Figure 15(b) gives the
results when the overturning just occurs at y=0 while the overturning jet has been well developed
at other three vertical planes. It is interesting to point out that the wave front at y=1.1 now clearly
departures from the front at y=0.5 and becomes closer to the front at y=0.8 and also that the jet
at y=1.1 is as sharp as the jet at y=0.8 but much sharper than the jet at y=0.5. This observation
is confirmed by curves in Figure 15(c). All these facts indicate that the overturning jet is moving
gradually towards the wall of y=4. This seems to suggest that the overturning jets may be guided
to occur in some areas by changing the seabed geometry in order to prevent them from happening
at places where important structures sit near the shore.

More cases with different incident waves and different seabed geometries have also been simu-
lated, such as solitary waves propagating over non-symmetrical seabeds with different combina-
tions of k−

c and k+
c , transient oscillating waves overturning over bumps or artificial reefs on a

slope. We could not present all the results in one paper but more illustrations will be given in
the rest of this subsection. For this purpose, some snapshots of overturning waves are shown in
Figures 16 and 17. Figure 16 displays the wave profiles with well-developed overturning jets for
the case with k+

c =0.25 and k−
c =0.1. All other parameters for this figure are the same as for

Figure 15, except for k−
c that is now less than k+

c . It can be seen that the overturning now takes
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Figure 15. Free surface profiles at different longitudinal planes (H =0.6; sc = 1
15 ; k

+
c =0.25 and k−

c =1.0;
x0 is the initial position of the crest of the solitary wave): (a) �≈8.55; (b) �≈8.95; and (c) �≈9.16.

place in the area of y<0, rather than y>0 in Figure 14. This confirms that wave overturning can
be guided to avoid some area by changing seabed geometry. Figure 17 illustrates the free surface
profile for a transient oscillating wave overturning over several artificial reefs on a slope, which
is generated by a piston wavemaker subjected to a harmonic motion. In this case, two groups of
overturning jets are observed at the same time. Each group embodies three jets and the jets are
different from each other. This figure also reveals some interesting points, i.e. overturning does
not only occur above the reefs but also beyond them and several different overturning jets may
simultaneously take place.

7. CONCLUSION

In this paper, the QALE-FEM has been further developed to model 3D overturning waves. In
this method, the boundary value problem for the velocity potential is solved by using a finite
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Figure 16. Free surface profiles at �≈8.70 for k+
c =0.25 and k−

c =0.1, (H =0.6; sc = 1
15 , the colour bar

represents the speed (|∇�|) on the free surface).

Figure 17. Free surface profiles in cases with three artificial reefs for �≈26.68. The three reefs are
centred at (xc =11, yc =0), (xc =11.5, yc =3) and (xc =12, yc =−3), respectively. Each reef is defined
by z=0.2(1−e−1.7(|x−xc|+4))sech2[2(y− yc)]. The amplitude (a) and frequency (
) of the wavemaker
to generate the wave are a=0.2 and 
=1.0, respectively. The sloping seabed starts from x0=7.0 with
a slope of 1:15. The profiles below the free surface illustrate the seabed geometry, which is shifted by

z−0.5. The colour bar represents the speed (|∇�) on the free surface).

element method in a time-marching procedure. Compared with the conventional finite element
method for water wave problems without involving floating bodies, the QALE-FEM contains two
distinctive elements: (1) the scheme for moving the mesh by using a robust spring analogy method
purpose-developed for problems associated with oscillating free surfaces and (2) the method for
computing velocity on the free surface, which is suitable for unstructured and moving mesh. The
main technical developments in this paper are the improvement in these two aspects required for
dealing with 3D overturning waves. These include the special techniques for moving the mesh and
for calculating the fluid velocity near overturning jets presented in Sections 4 and 5. The main
application developments, as discussed in Section 6, include simulations of overturning of solitary
waves and transient oscillating waves propagating over 3D complex seabeds. These results reveal
some interesting points. For example, overturning jets may be guided to occur in some areas by
changing the seabed for engineering purposes; and several overturning jets may simultaneously
take place over a complex seabed.

The method has been validated by comparing its numerical predictions with experimental data
and results of other numerical methods in many cases with different configurations. This validation
leads to the conclusion that the QALE-FEM can yield results agreeing well with experimental data
and being at the same level of accuracy as those produced by the BEM. Based on comparison
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with a fast BEM under the same conditions, the QALE-FEM can be over 10 times faster. Using
this method, one can obtain the satisfactory results for complex 3D overturning waves within one
or two hours on a normal PC. Such efficiency has never been demonstrated by other numerical
methods as far as the authors know.
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5. Ducrozet G, Bonnefoy F, Le Touzé D, Ferrant P. 3-D HOS simulations of extreme waves in open seas. Natural
Hazards 2007; 7:11–14.

6. Ma QW. Numerical generation of freak waves using MLPG R and QALE-FEM methods. Computer Modeling
in Engineering and Sciences (CMES) 2007; 18(3):223–234.

7. Miyata H, Kanai A, Kawamura T, Park J. Numerical simulation of three-dimensional breaking waves. Journal
of Marine Science and Technology 1996; 1:183–197.

8. Chen G, Kharif C, Zaleski S, Li J. Two-dimensional Navier–Stokes simulation of breaking waves. Physics of
Fluids 1999; 11:121–133.

9. Guignard S, Marcer R, Rey V, Kharif C, Fraunie P. Solitary wave breaking on sloping beaches: 2-D two phase
flow numerical simulation by SL-VOF method. European Journal of Mechanics, B/Fluids 2001; 20(1):57–74.

10. Lubin P, Vincent S, Caltagirone J, Abadie S. Fully three-dimensional direct numerical simulation of a plunging
breaker. Comptes Rendus Mecanique 2003; 331(7):495–501.

11. Hieu PD, Katsutoshi T, Ca VT. Numerical simulation of breaking waves using a two-phase flow model. Applied
Mathematical Modelling 2004; 28(11):983–1005.

12. Andrillon Y, Alessandrini B. A 2D+T VOF fully coupled formulation for the calculation of breaking free-surface
flow. Journal of Marine Science and Technology 2004; 8:159–168.

13. Park JC, Kim MH, Miyata H, Chun HH. Fully nonlinear numerical wave tank (NWT) simulations and wave
run-up prediction around 3-D structures. Ocean Engineering 2003; 30:1969–1996.

14. Hu C, Kashiwage M. A CIP-based method for numerical simulations of violent free-surface flows. Journal of
Marine Science and Technology 2004; 9:143–157.

15. Lo EYM, Shao S. Simulation of near-shore solitary wave mechanics by an incompressible SPH method. Applied
Ocean Research 2002; 24(5):275–286.

16. Issa R, Violeau D. Modelling a plunging breaking solitary wave with eddy-viscosity turbulent SPH models. CMC
2004; 1:101–112.

17. Dalrymple RA, Rogers BD. Numerical modelling of water waves with the SPH method. Coastal Engineering
2006; 53:141–147.

18. Koshizuka S, Nobe A, Oka Y. Numerical analysis of breaking waves using the moving particle semi-implicit
method. International Journal for Numerical Methods in Fluids 1998; 26:751–769.

19. Gotoh H, Sakai T. Key issues in the particle method for computation of wave breaking. Coastal Engineering
2006; 53:171–179.

20. Pin FD, Idelsohn S, Onate E, Aubry R. The ALE/Lagrangian particle finite element method: a new approach to
computation of free-surface flows and fluid-object interactions. Computers and Fluids 2007; 36(1):27–28.

21. Ma QW, Yan S. Quasi ALE finite element method for nonlinear water waves. Journal of Computational Physics
2006; 212:52–72.

Copyright q 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2010; 63:743–768
DOI: 10.1002/fld



766 S. YAN AND Q. W. MA

22. Grilli ST, Subramanya R. Numerical modelling of wave breaking induced by fixed or moving boundaries.
Computational Mechanics 1996; 17(6):374–391.

23. Skyner DA. A comparison of numerical predictions and experimental measurements of the internal kinematics
of a deep-water plunging wave. Journal of Fluid Mechanics 1996; 315:51–64.

24. Yasuda T, Mutsuda H, Mizutani N. Kinematics of overturning solitary waves and their relations to breaker types.
Coastal Engineering 1997; 29(3–4):317–346.

25. Yan S. Numerical simulation of nonlinear response of moored floating structures to steep waves. Ph.D. Thesis,
School of Engineering and Mathematical Sciences, City University, London 2006.

26. Helluy PH, Golay F, Caltagirone JP, Lubin P, Vincent S, Drevard D, Marcer R, Seguin N, Grilli ST, Lesage AC,
Dervieux A. Numerical simulations of wave breaking. Mathematical Modelling and Numerical Analysis 2005;
39:591–607.

27. Devrard D, Marcer R, Grilli ST, Fraunie P, Rey V. Experimental validation of a coupled BEM-Navier–Stokes
model for solitary wave shoaling and breaking. Proceeding of 5th International Symposium on Ocean Wave
Measurement and Analysis, Madrid, Spain, 2005; 166–176.

28. Grilli ST, Guyenne P, Dias F. A fully non-linear model for three-dimensional overturning waves over an arbitrary
bottom. International Journal for Numerical Methods in Fluids 2001; 35(7):829–867.

29. Lachaume C, Biausser B, Grilli ST, Fraunie P, Guignard S. Modelling of breaking and post-breaking waves on
slopes by coupling of BEM and VOF methods. Proceedings of the International Offshore and Polar Engineering
Conference, Honolulu, HI, U.S.A., 2003; 1698–1704.

30. Garzon M, Sethian JA. Wave breaking over sloping beaches using a coupled boundary integral-level set method.
International Series of Numerical Mathematics 2006; 154:189–198.

31. Longuet-higgins MS, Cokelet ED. The deformation of steep waves on water: I. A numerical method of computation.
Proceedings of the Royal Society of London, Series A 1976; 350:1–26.

32. Dommermuth DG, Yue DKP, Lin WM, Rapp RJ, Chan ES, Melville WK. Deep water plunging breakers:
a comparison between potential theory and experiments. Journal of Fluid Mechanics 1988; 189:423–442.

33. Vinje T, Brevig P. Numerical simulation of breaking waves. Advances in Water Resources 1981; 4(2):77–82.
34. New AL, Mciver P, Peregrine DH. Computation of overturning waves. Journal of Fluid Mechanics 1985;

150:233–251.
35. Grilli ST, Skourup J, Svendsen IA. An efficient boundary element method for nonlinear water waves. Engineering

Analysis with Boundary Elements 1989; 6:97–107.
36. Seo SN, Dalrymple RA. An efficient model for periodic overturning waves. Engineering Analysis with Boundary

Elements 1990; 7:196–204.
37. Cooker MJ, Peregrine DH. Violent water motion at breaking-wave impact. Proceedings of the Coastal Engineering

Conference, Delft, The Netherlands, vol. 1, 1990; 164–176.
38. Otta AK, Svendsen LA, Grilli ST. The breaking and run-up of solitary waves on beaches. Proceedings of the

Coastal Engineering Conference, Venice, Italy, vol. 2, 1992; 1461–1474.
39. Cao Y, Beck RF, Schultz WW. Numerical computations of two-dimensional solitary waves generated by moving

disturbances. International Journal for Numerical Methods in Fluids 1993; 17(10):905–920.
40. Wang P, Yao Y, Tulin MP. Wave group evolution, wave deformation, and breaking: simulations using LONGTANK,

a numerical wave tank. International Journal of Offshore and Polar Engineering 1994; 4(3):200–205.
41. Grilli ST, Svendsen IA, Subramanya R. Breaking criterion and characteristics for solitary waves on slopes.

Journal of Waterway, Port, Coastal and Ocean Engineering 1997; 123:102–112.
42. Maiti S, Sen D. Computation of solitary waves during propagation and runup on a slope. Ocean Engineering

1999; 26(11):1063–1083.
43. Grilli ST, Gilbert R, Lubin P, Vicent S, Legendre D, Duyam M, Kimmoun O, Branger H, Devrard D, Fraunie P,

Abadie S. Numerical modeling and experiments for solitary wave shoaling and breaking over a sloping beach.
Proceedings of the Fourteenth (2004) International Offshore and Polar Engineering Conference (ISOPE2004),
Toulon, France, 2004; 306–312.

44. Drimer N, Agnon Y. An improved low-order boundary element method for breaking surface waves. Wave Motion
2006; 43(3):241–258.

45. Christou M, Swan C, Gudmestad OT. The description of breaking waves and the underlying water particle
kinematics. The International Conference on Offshore Mechanics and Arctic Engineering (OMAE2007), San Diego,
U.S.A., 2007; 291–299.

46. Ortiz JC, Douglass SL. Boundary element solution of water particle velocities of waves breaking on mild slopes.
Boundary Element XV: Fluid Flow and Computational Aspects, Worcester Polytechnic Institute, Worcester, MA.
Computational Mechanics, 1993; 221–232. ISBN: 1562521977 9781562521974.

Copyright q 2009 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2010; 63:743–768
DOI: 10.1002/fld



QALE-FEM FOR MODELLING 3D OVERTURNING WAVES 767

47. Zhao R, Faltinsen OM. Water entry of a two-dimensional body. Proceedings of 6th International Workshop on
Water Waves and Floating Bodies, Woods Hole, MA, U.S.A., 1991; 275–279.
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